Every line of 'pandas median' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
37 def median_absolute_deviation(data,suspect): 38 series=pd.Series(data) 39 median=series.median() 40 demedians=np.abs(series-median) 41 demedian=demedians.median() 42 if demedian==0: 43 return False 44 test=demedians.iget(-1)/demedian 45 if test>6: 46 return True 47 return False
995 @property 996 def median(self): 997 """Return the median.""" 998 return 0
31 def smm(df: pd.DataFrame, 32 period: int = 50, 33 col: str = pd_utils.CLOSE_COL) -> pd.Series: 34 """ 35 Compute the simple moving median over a given period. 36 37 :param df: The data frame. 38 :param period: The number of days to use. 39 :param col: The name of the column to use to compute the median. 40 :return: Series containing the simple moving median. 41 42 """ 43 temp_series = df[col].rolling(center=False, 44 window=period, 45 min_periods=period - 1).median() 46 return pd.Series(temp_series, index=df.index, name='smm')
213 @property 214 def median(self): 215 """ 216 Median of *k*-mer counts. 217 """ 218 return np.median(self.counts)
318 def median(self): 319 return self.quantiles([0.5])[:,0]
26 def median(values): 27 length = len(values) 28 values.sort() 29 if length % 2 != 0: 30 # Odd number of values, so chose middle one 31 return values[length/2] 32 else: 33 # Even number of values, so mean of middle two 34 return mean([values[length/2], values[(length/2)-1]])