Every line of 'pandas min max normalization' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
82 def normalize(df, excludes): 83 result = df.copy() 84 for feature_name in df.columns: 85 if feature_name in excludes: 86 continue 87 try: 88 max_value = df[feature_name].max() 89 min_value = df[feature_name].min() 90 if max_value == min_value: 91 min_value = 0 92 result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value) 93 result[feature_name] = result[feature_name].apply(lambda x: round(abs(x), 4)) 94 except: 95 LOGGER.error(f'Error normalizing feature: {feature_name}') 96 raise RuntimeError(f'Error normalizing feature: {feature_name}') 97 return result
34 def norm_minmax(X, min_=0, max_=1): 35 Xmin = X.min(axis=0) 36 Xmax = X.max(axis=0) 37 return (X - Xmin) / (Xmax - Xmin) * (max_ - min_) + min_
396 def minmax_normalize(X, lower, upper): 397 return (X - lower) / (upper - lower)