Every line of 'pandas read txt' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
37 def readcsv(filename, header=True): 38 return pd.read_csv(filename, header=None) if not header else pd.read_csv(filename)
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
10 def __read(filename): 11 field_names = ['date', 'value', 'metaID'] 12 entry_format = '<qdi' # long, double, int; See field names above. 13 entry_size = calcsize(entry_format) 14 15 if not os.path.exists(filename): 16 return pd.DataFrame(None, columns = ['date', 'value', 'metaID']) 17 18 records = np.fromfile(filename, dtype=np.dtype({'names':field_names, 'formats': entry_format[1:]})) 19 20 if len(records) == 0: return pd.DataFrame(None, columns = ['date', 'value', 'metaID']) 21 22 df = pd.DataFrame(records, columns = field_names) 23 df['date'] = pd.to_datetime(df['date'], unit='s') 24 df = df.set_index('date') 25 26 meta_ids = df.metaID 27 df.loc[df.metaID == METADATA_MISSING_VALUE] = np.nan 28 df.metaID = meta_ids 29 30 return df
8 def read_txt(txt): 9 f = open(txt, 'r') 10 lines = f.readlines() 11 f.close() 12 return [tmp.strip() for tmp in lines]