How to use 'pandas remove outliers' in Python

Every line of 'pandas remove outliers' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
37def filterout_outliers(l_data, l_date):
38 '''
39 Return a list with data filtered from outliers
40
41 :param l_data: list. data to be analyzed
42 '''
43 # === old code to filter outliers =======
44 # Q3 = np.percentile(l_data, 98)
45 # Q1 = np.percentile(l_data, 2)
46 # step = (Q3 - Q1) * 1.5
47 # step = max(3000., step)
48 # na_val = np.array(l_data)
49 # na_val = na_val[(na_val >= Q1 - step) & (na_val <= Q3 + step)]
50 # return na_val
51 # =======================================
52 # group by minute
53 df_filter = pd.Series(np.array(l_date)/60).astype(int)
54 l_filter = list((df_filter != df_filter.shift()).values)
55 l_filter[0] = True
56 l_filter[-1] = True
57 return np.array(pd.Series(l_data)[l_filter].values)
116def _handle_outliers(self, p_o):
117 """ Sets observation probabilities of outliers to uniform if ignore_outliers is set.
118 Parameters
119 ----------
120 p_o : ndarray((T, N))
121 output probabilities
122 """
123 if self.ignore_outliers:
124 outliers = np.where(p_o.sum(axis=1)==0)[0]
125 if outliers.size > 0:
126 p_o[outliers, :] = 1.0
127 self.found_outliers = True
128 return p_o

Related snippets