Every line of 'pandas remove outliers' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
37 def filterout_outliers(l_data, l_date): 38 ''' 39 Return a list with data filtered from outliers 40 41 :param l_data: list. data to be analyzed 42 ''' 43 # === old code to filter outliers ======= 44 # Q3 = np.percentile(l_data, 98) 45 # Q1 = np.percentile(l_data, 2) 46 # step = (Q3 - Q1) * 1.5 47 # step = max(3000., step) 48 # na_val = np.array(l_data) 49 # na_val = na_val[(na_val >= Q1 - step) & (na_val <= Q3 + step)] 50 # return na_val 51 # ======================================= 52 # group by minute 53 df_filter = pd.Series(np.array(l_date)/60).astype(int) 54 l_filter = list((df_filter != df_filter.shift()).values) 55 l_filter[0] = True 56 l_filter[-1] = True 57 return np.array(pd.Series(l_data)[l_filter].values)
116 def _handle_outliers(self, p_o): 117 """ Sets observation probabilities of outliers to uniform if ignore_outliers is set. 118 Parameters 119 ---------- 120 p_o : ndarray((T, N)) 121 output probabilities 122 """ 123 if self.ignore_outliers: 124 outliers = np.where(p_o.sum(axis=1)==0)[0] 125 if outliers.size > 0: 126 p_o[outliers, :] = 1.0 127 self.found_outliers = True 128 return p_o