Every line of 'pandas replace specific values in column' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
78 def _clean_column(self, column): 79 if not isinstance(column, (int, str, unicode)): 80 raise ValueError('{} is not a valid column'.format(column)) 81 return column in self.df.columns
91 def __init__(self, col, replace, **kwargs): 92 kwargs.update(dict(col=col, type='null-empty', replace=replace)) 93 super(ReplaceNullEmpty, self).__init__(**kwargs)
46 def conform_to_original_data(cdata, cols_input, data): 47 """Reset column names and add dropped columns back""" 48 cdata.output = cdata.output.rename(columns=cols_input) 49 cdata.output = cdata.output.merge( 50 data, how="outer", on=list(cols_input.values())) 51 return(cdata)
420 def df_column_types_rename(df): 421 result = [df[x].dtype.name for x in list(df.columns)] 422 result[:] = [x if x != 'object' else 'string' for x in result] 423 result[:] = [x if x != 'int64' else 'integer' for x in result] 424 result[:] = [x if x != 'float64' else 'double' for x in result] 425 result[:] = [x if x != 'bool' else 'boolean' for x in result] 426 427 return result
39 def _drop_col(self, df): 40 ''' 41 Drops last column, which was added in the parsing procedure due to a 42 trailing white space for each sample in the text file 43 Arguments: 44 df: pandas dataframe 45 Return: 46 df: original df with last column dropped 47 ''' 48 return df.drop(df.columns[-1], axis=1)