Every line of 'pandas transform' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
51 def transform(self, X, columns=None): 52 self._check_input(X) 53 x_type = type(X) 54 55 if x_type == MultiSeries: 56 return self._transform_series(X) 57 58 # If X is not MultiSeries, then it's MultiDataFrame 59 # Because of self._check_input function 60 return self._transform_data_frame(X)
140 def transform(self, X, columns_mapping=None): 141 ''' 142 Transform X with fitted dictionary self.transformations. 143 :param columns_mapping: {old_col: new_col} mapping between columns in fit data set and current X 144 :return: 145 ''' 146 if columns_mapping is None: 147 columns_mapping = {} 148 149 transformers_df = X.copy() 150 151 for col_name, transformations in self.transformations.items(): 152 for t in transformations: 153 new_col_name = columns_mapping.get(col_name, col_name) 154 transformed_column = t.transform(X[new_col_name]) 155 156 if type(transformed_column) == XSeries: 157 transformers_df.rename(columns={ 158 new_col_name: transformed_column.name 159 }, inplace=True) 160 transformers_df[transformed_column.name] = transformed_column 161 else: 162 transformers_df.drop(new_col_name, inplace=True, axis=1) 163 164 transformers_df = XDataFrame.concat_dataframes( 165 [transformers_df, transformed_column] 166 ) 167 168 return transformers_df
44 def transform(self, data): 45 """User implements internal transform function which operates on a single data element from a data_object 46 47 Args: 48 data (object): input data 49 50 Returns: 51 data, transformed 52 53 """ 54 if isinstance(data, pd.DataFrame): 55 if self.columns: 56 scaled_features_df = data.copy() 57 58 # transform select columns 59 scaled_features = self.preprocessor.transform(data[self.columns].values) 60 for idx, colname in enumerate(self.columns): 61 scaled_features_df[colname] = scaled_features[:,idx] 62 63 else: 64 scaled_features = self.preprocessor.transform(data.values) 65 try: 66 scaled_features_df = pd.DataFrame(scaled_features, index=data.index, columns=data.columns) 67 except ValueError: 68 logging.info(f'{self.preprocessor.__class__.__name__} instance changed the number of columns. Returning raw values') 69 return pd.DataFrame(scaled_features) 70 return scaled_features_df 71 72 return self.preprocessor.transform(data)
250 def _transform(self, dataset): 251 self._transfer_params_to_java() 252 return DataFrame(self._java_obj.transform(dataset._jdf), dataset.sql_ctx)
7 def dataframe_transform_parallel( 8 df, transformer 9 ): 10 cpu_count = multiprocessing.cpu_count() 11 workers_count = int(round(cpu_count)) 12 logger.log(15, 'Dataframe_transform_parallel running pool with '+str(workers_count)+' workers') 13 df_chunks = np.array_split(df, workers_count) 14 df_list = execute_multiprocessing(workers_count=workers_count, transformer=transformer, chunks=df_chunks) 15 df_combined = pd.concat(df_list, axis=0, ignore_index=True) 16 return df_combined