# 10 examples of 'print n prime numbers in python' in Python

Every line of 'print n prime numbers in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

## All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
``20def prime(num):21    # num is actually a string because input() returns strings. We'll convert it to int22    num = int(num)2324    if num < 0:25        print("Negative integers can not be prime")26        quit()27    if num is 1:28        print("1 is neither prime nor composite")29        # See how I lazily terminated program otherwise it'd forward "None"(default behaviour of python when function30        # returns nothing) rather than True or False. Which could mess up the program.31        # If we hit this if statement above statement is printed then program exits.32        quit()  # Now you don't need to get sys.exit() to exit python has quit to handle the same thing33    if num in [2, 3]:34        # if given argument is 2 or 3, it is prime. We used list without defining a variable which is perfectly valid35        return True36    if num % 2 == 0:  # excluding all even numbers except two.37        return False38    else:39        # Here we are starting counter variable from 3 in range. Second argument excludes numbers above one third40        # of the given argument. Third argument in range sets steps to take to 2. This makes loop to iterate odds41        for x in range(3, int(num/3), 2):42            # Checking if argument is divisible by counter. % is modulus operator which returns remainder of division43            if num % x == 0:44                return False45    # It's okay to have more than one return statement when program hits return statement it exits the function.46    return True``
``746def prime_number_factorisation(n):747    if n < 2:748        return [n]749    i = 2750    factors = []751    while i * i <= n:752        if n % i:753            i += 1754        else:755            n //= i756            factors.append(i)757    if n > 1:758        factors.append(n)759    return factors``
``16def primeGen(n):17    for i in xrange(2, n):18        prime = True19        if i % 2 == 0 and i != 2:20            continue21        sqrtp = int(i ** 1 / 2)22        for j in xrange(2, sqrtp):23            if j % 2 == 0:24                continue25            if i % j == 0:26                prime = False27                break28        if prime:29            yield i``
``12def primes():13    yield 214    yield 31516    for i in itertools.count(start=5, step=2):17        if is_prime(i):18            yield i``
``1def is_prime(n):2	if n < 2:3		return False45	i = 267	while i * i <= n:8		if n % i == 0:9			return False1011		i += 11213	return True``
``3def is_prime(n):4    i = 35    while i * i <= n:6        if n % i == 0: return False7        i += 28    return True``
``1285def primefactors(n, limit=None, verbose=False):1286    """Return a sorted list of n's prime factors, ignoring multiplicity1287    and any composite factor that remains if the limit was set too low1288    for complete factorization. Unlike factorint(), primefactors() does1289    not return -1 or 0.12901291    Examples1292    ========12931294    >>> from sympy.ntheory import primefactors, factorint, isprime1295    >>> primefactors(6)1296    [2, 3]1297    >>> primefactors(-5)1298    [5]12991300    >>> sorted(factorint(123456).items())1301    [(2, 6), (3, 1), (643, 1)]1302    >>> primefactors(123456)1303    [2, 3, 643]13041305    >>> sorted(factorint(10000000001, limit=200).items())1306    [(101, 1), (99009901, 1)]1307    >>> isprime(99009901)1308    False1309    >>> primefactors(10000000001, limit=300)1310    [101]13111312    See Also1313    ========13141315    divisors1316    """1317    n = int(n)1318    factors = sorted(factorint(n, limit=limit, verbose=verbose).keys())1319    s = [f for f in factors[:-1:] if f not in [-1, 0, 1]]1320    if factors and isprime(factors[-1]):1321        s += [factors[-1]]1322    return s``
``3def is_prime(n):4    if n <= 1:5        return False6    elif n == 2:7        return True8    elif n % 2 == 0:9        return False10    for i in xrange(3, int(sqrt(n))+1, 2):11        if n % i == 0:12            return False13    return True``
``21def is_prime(n):22    for i in xrange(2, int(sqrt(n)) + 1):23        if n % i == 0:24            return False2526    return True``
``6def is_prime(n):7   '''8   checks if a number is prime9   '''10   if n < 2:11      return False12   if n == 2:13      return True14   for x in range(2, int(n**0.5)+1, 2):15      if n % x == 0:16         return False17   return True``