Every line of 'print prime numbers from 1 to n in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
20 def prime(num): 21 # num is actually a string because input() returns strings. We'll convert it to int 22 num = int(num) 23 24 if num < 0: 25 print("Negative integers can not be prime") 26 quit() 27 if num is 1: 28 print("1 is neither prime nor composite") 29 # See how I lazily terminated program otherwise it'd forward "None"(default behaviour of python when function 30 # returns nothing) rather than True or False. Which could mess up the program. 31 # If we hit this if statement above statement is printed then program exits. 32 quit() # Now you don't need to get sys.exit() to exit python has quit to handle the same thing 33 if num in [2, 3]: 34 # if given argument is 2 or 3, it is prime. We used list without defining a variable which is perfectly valid 35 return True 36 if num % 2 == 0: # excluding all even numbers except two. 37 return False 38 else: 39 # Here we are starting counter variable from 3 in range. Second argument excludes numbers above one third 40 # of the given argument. Third argument in range sets steps to take to 2. This makes loop to iterate odds 41 for x in range(3, int(num/3), 2): 42 # Checking if argument is divisible by counter. % is modulus operator which returns remainder of division 43 if num % x == 0: 44 return False 45 # It's okay to have more than one return statement when program hits return statement it exits the function. 46 return True
1 def is_prime(n): 2 if n < 2: 3 return False 4 5 i = 2 6 7 while i * i <= n: 8 if n % i == 0: 9 return False 10 11 i += 1 12 13 return True
3 def is_prime(n): 4 i = 3 5 while i * i <= n: 6 if n % i == 0: return False 7 i += 2 8 return True
6 def is_prime(n): 7 ''' 8 checks if a number is prime 9 ''' 10 if n < 2: 11 return False 12 if n == 2: 13 return True 14 for x in range(2, int(n**0.5)+1, 2): 15 if n % x == 0: 16 return False 17 return True
16 def primeGen(n): 17 for i in xrange(2, n): 18 prime = True 19 if i % 2 == 0 and i != 2: 20 continue 21 sqrtp = int(i ** 1 / 2) 22 for j in xrange(2, sqrtp): 23 if j % 2 == 0: 24 continue 25 if i % j == 0: 26 prime = False 27 break 28 if prime: 29 yield i
746 def prime_number_factorisation(n): 747 if n < 2: 748 return [n] 749 i = 2 750 factors = [] 751 while i * i <= n: 752 if n % i: 753 i += 1 754 else: 755 n //= i 756 factors.append(i) 757 if n > 1: 758 factors.append(n) 759 return factors
3 def is_prime(n): 4 if n <= 1: 5 return False 6 elif n == 2: 7 return True 8 elif n % 2 == 0: 9 return False 10 for i in xrange(3, int(sqrt(n))+1, 2): 11 if n % i == 0: 12 return False 13 return True
21 def is_prime(n): 22 for i in xrange(2, int(sqrt(n)) + 1): 23 if n % i == 0: 24 return False 25 26 return True
36 def primes_from(prime_sieve): 37 for n, is_prime in enumerate(prime_sieve): 38 if is_prime: 39 yield n
50 def prime_factors(n): 51 """Lists prime factors of a given natural integer, from greatest to smallest 52 :param n: Natural integer 53 :rtype : list of all prime factors of the given natural n 54 """ 55 i = 2 56 while i <= sqrt(n): 57 if n % i == 0: 58 l = prime_factors(n/i) 59 l.append(i) 60 return l 61 i += 1 62 return [n] # n is prime