Every line of 'program to find factorial of a number in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
13 def factorial(): 14 """ 15 This function reads a number and computes its factorial 16 """ 17 print("Problem: Factorial") 18 19 number = int(input()) 20 result = 1 21 22 for n in range(2, number+1): 23 result *= n 24 25 print(result)
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
2 def factorial(n): 3 fact = 1 4 for i in range(1,n+1): 5 fact *= i 6 return fact
1 def factorial(n): 2 res = 1 3 for i in range(2, n + 1): 4 res *= i 5 return res
42 def factorial(n): 43 """ 44 normal recursive two_sum 45 :return: int 46 """ 47 if n == 1 or n == 0: # base case for n = 0, 1 48 return 1 49 else: # recursive case when n > 1 50 return n * factorial(n - 1)
2 def factorial(n): 3 if(n==1): 4 return 1 5 else: 6 return(factorial(n-1)*n)
11 def factorial(n): 12 res = i = 1 13 while i <= n: 14 res *= i 15 i += 1 16 return res
9 def factorial(n): 10 if n is 0: 11 return 1 12 else: 13 return n * factorial(n-1)
34 def inverse_factorial(number, round_up=True): 35 ''' 36 Get the integer that the factorial of would be `number`. 37 38 If `number` isn't a factorial of an integer, the result will be rounded. By 39 default it'll be rounded up, but you can specify `round_up=False` to have 40 it be rounded down. 41 42 Examples: 43 44 >>> inverse_factorial(100) 45 5 46 >>> inverse_factorial(100, round_up=False) 47 4 48 49 ''' 50 assert number >= 0 51 if number == 0: 52 return 0 53 elif number < 1: 54 return int(round_up) # Heh. 55 elif number == 1: 56 return 1 57 else: 58 current_number = 1 59 for multiplier in itertools.count(2): 60 current_number *= multiplier 61 if current_number == number: 62 return multiplier 63 elif current_number > number: 64 return multiplier if round_up else (multiplier - 1)
42 def odd_factorialish(n): 43 if n == 0: 44 return 1 45 else: 46 return odd_factorialish(n // 5) * factorial_coprime(n) % 100000
746 def prime_number_factorisation(n): 747 if n < 2: 748 return [n] 749 i = 2 750 factors = [] 751 while i * i <= n: 752 if n % i: 753 i += 1 754 else: 755 n //= i 756 factors.append(i) 757 if n > 1: 758 factors.append(n) 759 return factors