10 examples of 'program to find factorial of a number in python' in Python

Every line of 'program to find factorial of a number in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
13def factorial():
14 """
15 This function reads a number and computes its factorial
16 """
17 print("Problem: Factorial")
18
19 number = int(input())
20 result = 1
21
22 for n in range(2, number+1):
23 result *= n
24
25 print(result)
2def factorial(n):
3 fact = 1
4 for i in range(1,n+1):
5 fact *= i
6 return fact
1def factorial(n):
2 res = 1
3 for i in range(2, n + 1):
4 res *= i
5 return res
42def factorial(n):
43 """
44 normal recursive two_sum
45 :return: int
46 """
47 if n == 1 or n == 0: # base case for n = 0, 1
48 return 1
49 else: # recursive case when n > 1
50 return n * factorial(n - 1)
2def factorial(n):
3 if(n==1):
4 return 1
5 else:
6 return(factorial(n-1)*n)
11def factorial(n):
12 res = i = 1
13 while i <= n:
14 res *= i
15 i += 1
16 return res
9def factorial(n):
10 if n is 0:
11 return 1
12 else:
13 return n * factorial(n-1)
34def inverse_factorial(number, round_up=True):
35 '''
36 Get the integer that the factorial of would be `number`.
37
38 If `number` isn't a factorial of an integer, the result will be rounded. By
39 default it'll be rounded up, but you can specify `round_up=False` to have
40 it be rounded down.
41
42 Examples:
43
44 >>> inverse_factorial(100)
45 5
46 >>> inverse_factorial(100, round_up=False)
47 4
48
49 '''
50 assert number >= 0
51 if number == 0:
52 return 0
53 elif number < 1:
54 return int(round_up) # Heh.
55 elif number == 1:
56 return 1
57 else:
58 current_number = 1
59 for multiplier in itertools.count(2):
60 current_number *= multiplier
61 if current_number == number:
62 return multiplier
63 elif current_number > number:
64 return multiplier if round_up else (multiplier - 1)
42def odd_factorialish(n):
43 if n == 0:
44 return 1
45 else:
46 return odd_factorialish(n // 5) * factorial_coprime(n) % 100000
746def prime_number_factorisation(n):
747 if n < 2:
748 return [n]
749 i = 2
750 factors = []
751 while i * i <= n:
752 if n % i:
753 i += 1
754 else:
755 n //= i
756 factors.append(i)
757 if n > 1:
758 factors.append(n)
759 return factors

Related snippets