Every line of 'python calculate distance between two coordinates' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
46 def distance(x1, y1, x2, y2): 47 """Get the distance between two points.""" 48 return ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5
37 def _calculate_distance(latlon1, latlon2) : 38 """Calculates the distance between two points on earth. 39 """ 40 lat1, lon1 = latlon1 41 lat2, lon2 = latlon2 42 R = 6371 # radius of the earth in kilometers 43 dlon = lon2 - lon1 44 dlat = lat2 - lat1 45 a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon/2))**2 46 c = 2 * np.pi * R * np.arctan2( np.sqrt(a), np.sqrt(1-a) ) / 180 47 return c
10 def distance(x1, y1, x2, y2): 11 """Return the distance between the points (x1, y1) and (x2, y2)""" 12 t1 = (x1 - x2) 13 t2 = (y1 - y2) 14 return math.sqrt(t1 * t1 + t2 * t2)
60 def distance(x1, y1, x2, y2): 61 """ 62 l2 distance 63 """ 64 65 return math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2))
22 def distance(a,b,x,y): 23 return ((a - x)**2 + (b - y)**2)**0.5
53 def _py_distance(point1, point2): 54 ''' 55 Calculating great-circle distance 56 (see https://en.wikipedia.org/wiki/Great-circle_distance) 57 ''' 58 lon1, lat1 = (radians(coord) for coord in point1) 59 lon2, lat2 = (radians(coord) for coord in point2) 60 61 dlon = fabs(lon1 - lon2) 62 dlat = fabs(lat1 - lat2) 63 64 numerator = sqrt( 65 (cos(lat2)*sin(dlon))**2 + 66 ((cos(lat1)*sin(lat2)) - (sin(lat1)*cos(lat2)*cos(dlon)))**2) 67 68 denominator = ( 69 (sin(lat1)*sin(lat2)) + 70 (cos(lat1)*cos(lat2)*cos(dlon))) 71 72 c = atan2(numerator, denominator) 73 return EARTH_MEAN_RADIUS*c
156 def calcDistance(a,b): #calculate distance between two points. 157 try: 158 x1, y1 = a 159 x2, y2 = b 160 return math.hypot(x2 - x1, y2 - y1) 161 except Exception as e: 162 print("unable to calculate distance")
207 def calculate(self): 208 lat1, lng1 = map(radians, self.a) 209 lat2, lng2 = map(radians, self.b) 210 211 sin_lat1, cos_lat1 = sin(lat1), cos(lat1) 212 sin_lat2, cos_lat2 = sin(lat2), cos(lat2) 213 214 delta_lng = lng2 - lng1 215 cos_delta_lng, sin_delta_lng = cos(delta_lng), sin(delta_lng) 216 217 central_angle = acos(sin_lat1 * sin_lat2 + 218 cos_lat1 * cos_lat2 * cos_delta_lng) 219 220 # From http://en.wikipedia.org/wiki/Great_circle_distance: 221 # Historically, the use of this formula was simplified by the 222 # availability of tables for the haversine function. Although this 223 # formula is accurate for most distances, it too suffers from 224 # rounding errors for the special (and somewhat unusual) case of 225 # antipodal points (on opposite ends of the sphere). A more 226 # complicated formula that is accurate for all distances is: (below) 227 228 d = atan2(sqrt((cos_lat2 * sin_delta_lng) ** 2 + 229 (cos_lat1 * sin_lat2 - 230 sin_lat1 * cos_lat2 * cos_delta_lng) ** 2), 231 sin_lat1 * sin_lat2 + cos_lat1 * cos_lat2 * cos_delta_lng) 232 233 self.radians = d
242 def distance(x1,y1,z1,x2,y2,z2): 243 a=x2-x1 244 b=y2-y1 245 c=z2-z1 246 return math.sqrt(a*a+b*b+c*c)
12 def euclidean_distance(x1, x2, y1, y2): 13 """ Calculate Euclidean distance from (x1,y1) to (x2,y2). """ 14 15 return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)