6 examples of 'python extract data from json file' in Python

Every line of 'python extract data from json file' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
37def return_train_data_from_json(input_json):
38 """Returns train data set from input JSON
39
40 Args:
41 input_json (dict): "Extraction" dictionary
42
43 Returns:
44 X (numpy.ndarray): Features
45
46 y (numpy.ndarray): Labels
47 """
48 X, y = return_main_data_from_json(input_json)
49
50 if input_json['test_dataset']['method'] == 'split_from_main':
51 X, X_test, y, y_test = train_test_split(
52 X,
53 y,
54 test_size=input_json['test_dataset']['split_ratio'],
55 random_state=input_json['test_dataset']['split_seed'],
56 stratify=y
57 )
58
59 if input_json['meta_feature_generation']['method'] == 'holdout_split':
60 X, X_test, y, y_test = train_test_split(
61 X,
62 y,
63 test_size=input_json['meta_feature_generation']['split_ratio'],
64 random_state=input_json['meta_feature_generation']['seed'],
65 stratify=y
66 )
67
68 return X, y
33def _get_parsed_data(file_obj, for_page=False):
34 raw = file_obj.read().decode('utf-8')
35 return json.loads(raw, object_hook=_object_version_data_hook)
43def read_data(log_file):
44 """
45 Read, parse and return the JSON data for the given log file name.
46 (As a side effect sets the global _last_log_file to the log file name.)
47 """
48 global _last_log_file
49 try:
50 with open(log_file, "r") as f:
51 f.readline()
52 data = json.load(f)
53 # Keep track of the current log file in global variable in case we need to
54 # identify it later if there's a problem. (This works because the files are
55 # processed lazily.)
56 _last_log_file = log_file
57 except IOError:
58 sys.exit("Could not read log file %s" % log_file)
59 return data
107def return_holdout_data_from_json(input_json):
108 """Returns holdout data set from input JSON
109
110 Args:
111 input_json (dict): "Extraction" dictionary
112
113 Returns:
114 X (numpy.ndarray): Features
115
116 y (numpy.ndarray): Labels
117 """
118 if input_json['meta_feature_generation']['method'] == 'holdout_split':
119 X, y = return_main_data_from_json(input_json)
120
121 if input_json['test_dataset']['method'] == 'split_from_main':
122 X, X_test, y, y_test = train_test_split(
123 X,
124 y,
125 test_size=input_json['test_dataset']['split_ratio'],
126 random_state=input_json['test_dataset']['split_seed'],
127 stratify=y
128 )
129
130 X, X_holdout, y, y_holdout = train_test_split(
131 X,
132 y,
133 test_size=input_json['meta_feature_generation']['split_ratio'],
134 random_state=input_json['meta_feature_generation']['seed'],
135 stratify=y
136 )
137
138 return X_holdout, y_holdout
139
140 if input_json['meta_feature_generation']['method'] == 'holdout_source':
141 if 'source' not in input_json['meta_feature_generation'] or \
142 not input_json['meta_feature_generation']['source']:
143 raise exceptions.UserError('Source is empty')
144
145 extraction_code = "".join(input_json['meta_feature_generation']["source"])
146 extraction_function = import_object_from_string_code(extraction_code,
147 "extract_holdout_dataset")
148 X_holdout, y_holdout = extraction_function()
149
150 return np.array(X_holdout), np.array(y_holdout)
36def load_and_parse_json(filename):
37 try:
38 return json.loads(read_file(filename))
39 except:
40 print 'ERROR: Failed to parse %s' % filename
41 raise
27def load_file(self):
28 with open('datafile.json', 'r') as f:
29 return json.loads(f.read())

Related snippets