Every line of 'python inverse matrix' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
210 def Inverse(self): 211 r"""Inverse(DenseMatrix self) -> MatrixInverse""" 212 return _densemat.DenseMatrix_Inverse(self)
288 def inv(self, matrix: Tensor) -> Tensor: 289 if len(matrix.shape) > 2: 290 raise ValueError( 291 "input to pytorch backend method `inv` has shape {}. Only matrices are supported." 292 .format(matrix.shape)) 293 return matrix.inverse()
138 def getInverse(self) -> "Matrix": 139 try: 140 return Matrix(numpy.linalg.inv(self._data)) 141 except: 142 return Matrix(self._data)
13 def test_inverse_simple(self): 14 T = np.array([ 15 [2, 1, 1, 0], 16 [4, 3, 3, 1], 17 [8, 7, 9, 5], 18 [6, 7, 9, 8] 19 ]) 20 21 actual = inverse(T) 22 expected = LA.inv(T) 23 24 self.assertTrue(np.allclose(actual, expected))
12 def inverse(bmat): 13 ''' 14 Inverse of a linear combination of Hs norms. We very strictly 15 enforce the form of sum_j alpha_j H^{s_j} 16 ''' 17 if isinstance(bmat, InterpolationMatrix): 18 return bmat**-1 19 20 if isinstance(bmat, block_utils.VectorizedOperator): 21 return block_utils.VectorizedOperator(inverse(bmat.bmat), bmat.W) 22 23 # Does it satisfy the definittion 24 assert is_well_defined(bmat) 25 # Try to see if sombody computes the eigenvalues 26 lmbda, U = extract_attributes(bmat, ('lmbda', 'U')) 27 # Do it your self 28 if U is None or lmbda is None: 29 A, M = extract_attributes(bmat, ('A', 'M')) 30 lmbda, U = eigh(A.array(), M.array()) 31 32 diagonal = np.zeros_like(lmbda) 33 for alpha, s in collect(bmat): 34 diagonal[:] += alpha*(lmbda**s) 35 # Invert 36 diagonal[:] = 1./diagonal 37 38 array = U.dot(np.diag(diagonal).dot(U.T)) 39 40 return numpy_to_petsc(array)
161 @staticmethod 162 @IMPLEMENT_NODE(returns=('Matrix44Pin', pyrr.Matrix44()), meta={'Category': 'Math|Matrix44', 'Keywords': ['create', 'matrix44']}) 163 def m44Inverse(m=('Matrix44Pin', pyrr.Matrix44())): 164 '''Returns the inverse of the matrix.\nThis is essentially a wrapper around numpy.linalg.inv.''' 165 return ~m
74 def invert(self): 75 # TODO test 76 rst = [] 77 for i in range(len(self)): 78 vi = [] 79 for j in range(len(self)): 80 vi.append(self.minor(j, i).determinant()) 81 82 vi = Vector(vi) 83 vi = vi * (1.0 / self.determinant()) 84 85 rst.append(vi) 86 87 return Matrix(rst)
21 def inv(x): 22 """ 23 computes inverse of input matrix 24 25 Parameters 26 ---------- 27 x : array_like (D, D) 28 square matrix 29 30 Returns 31 ------- 32 Array 33 inverse of `x` 34 35 Raises 36 ------ 37 ValueError 38 raises error if `x` is not square 39 """ 40 if x.ndim != 2 or x.shape[0] != x.shape[1]: 41 raise ValueError 42 return _Inverse().forward(x)