Every line of 'python percentile' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
84 def percentile(n): 85 def percentile_(x): 86 return np.percentile(x, n) 87 88 percentile_.__name__ = 'percentile_%s' % n 89 return percentile_
44 def get_percentile(self, percentile): 45 sum = 0 46 index = 0 47 while sum < percentile * self.total: 48 sum += self.buckets[index] 49 index += 1 50 51 if index == 0: 52 return 0 53 elif index - 1 >= len(self.BUCKET_OFFSETS): 54 return sys.maxint 55 else: 56 return self.BUCKET_OFFSETS[index - 1] - 1
53 def percentile(self, histogram, bins, percent): 54 """ Calculate the <> percentile of the histogram """ 55 # handle > 100 or < 0 56 if float(percent) <= 0: 57 return 0 58 elif float(percent) >= 100: 59 return bins[-1] 60 61 # if histogram is all 0s, return 0 62 if len(np.nonzero(histogram)[0]) == 0: 63 return 0 64 65 # normalize the histogram 66 hist_norm = np.zeros(histogram.shape) 67 68 hist_sum = 0.0 # dividing by a float ensures we get a float for normalized histograms 69 for binval in histogram: 70 hist_sum += binval 71 72 for i, binval in enumerate(histogram): 73 hist_norm[i] = histogram[i] / hist_sum 74 75 # compute the percentile using the normalized histogram 76 bin_sum = 0.0 # the normalized histogram is floating point 77 i = 0 78 pfloat = float(percent) * 0.01 79 while bin_sum < pfloat and i < hist_norm.shape[0]: 80 bin_sum += hist_norm[i] 81 i += 1 82 83 if i+1 >= len(bins): 84 return bins[-1] 85 86 return bins[i+1]
617 def _func(self, values, axis=1, **kwargs): 618 return pd.np.percentile(values, kwargs["value"], axis=axis)
366 def percentile(values, p): 367 if not isinstance(p, float) or not(0.0 <= p <= 1.0): 368 raise ValueError("p must be a float in the range [0.0; 1.0]") 369 370 values = sorted(values) 371 if not values: 372 raise ValueError("no value") 373 374 k = (len(values) - 1) * p 375 f = math.floor(k) 376 c = math.ceil(k) 377 if f != c: 378 d0 = values[f] * (c - k) 379 d1 = values[c] * (k - f) 380 return d0 + d1 381 else: 382 return values[int(k)]
290 def percentile25(arr): 291 return np.percentile(arr, (25), interpolation='midpoint')
52 def percentile(results, percent): 53 return _percentile(sorted(results), percent)
16 def get_percentile(stat): 17 if not stat.startswith('percentile_'): 18 raise ValueError("must start with 'percentile_'") 19 qstr = stat.replace("percentile_", '') 20 q = float(qstr) 21 if q > 100.0: 22 raise ValueError('percentiles must be <= 100') 23 if q < 0.0: 24 raise ValueError('percentiles must be >= 0') 25 return q