Every line of 'python read file into array' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
9 def read_file(): 10 # Text file containing words for training 11 training_file = 'belling_the_cat.txt' 12 content=[] 13 with open(training_file,'r') as f: 14 for line in f.readlines(): 15 # line 表示读到数据的每一行,linelist是按照空格切分成一个list 16 linelist=line.strip().split() 17 for i in linelist: 18 content.append(i.strip()) 19 content=np.array(content) 20 content=np.reshape(content,[-1,]) #shape (204,1) 21 return content
53 def read_file(f): 54 """ 55 Open the text file containing deep learning classification results for files. The decision variables is automatically opened from utils folder 56 :param f: text filename 57 :returns: 58 - sounds: sounds that were analyzed 59 - lc: labels for each sound 60 """ 61 with open(f, 'r') as i_file: 62 files = i_file.read().split('\n') 63 sounds = np.array([i.split(" ")[0].split(".json")[0] for i in np.array(files)]) 64 labels = np.array([i.split(" ") for i in np.array(files)]) 65 lc = [] 66 for lb in labels: 67 try: 68 lc.append(lb[1]) 69 except: 70 continue 71 decisions = np.loadtxt('utils/data.txt') 72 return sounds, np.array(lc), decisions
50 def file_reader(filename, shape, data_type = None, **kwds): 51 # TODO: write the reader... 52 53 dc = np.fromfile(filename, **kwds) 54 if len(shape) == 3: 55 dc = dc.reshape((shape[2], shape[1], shape[0])).swapaxes(1,2) 56 if data_type is None: 57 data_type = 'SI' 58 elif len(shape) == 2: 59 dc = dc.reshape(shape).T 60 if data_type is None: 61 data_type = 'Image' 62 return [{'mapped_parameters':{ 63 'data_type' : data_type, 64 'name' : filename, 65 }, 66 'data':dc,
52 def readArray(file, count, func): 53 result = [] 54 55 for i in range(count): 56 result.append(func(file)) 57 58 return result
4 def read_array_from_binary_file(filename, shape, dtype=numpy.float64, order='F'): 5 array = numpy.fromfile(filename, dtype=dtype) 6 if array.shape[0] != shape[0]*shape[1]*shape[2]: 7 raise ValueError("Incorrect grid size %d x %d x %d" %shape) 8 array = array.reshape(shape, order=order) 9 return array
164 def file_read(fname, arr, size): 165 return
13 def read_file(filename): 14 return np.matrix([map(float, line.strip('\n').split('\t')) for line in open(filename)])
1049 def _array_from_file(infile, dtype, count, sep): 1050 """Create a numpy array from a file or a file-like object.""" 1051 1052 if isfile(infile): 1053 1054 global CHUNKED_FROMFILE 1055 if CHUNKED_FROMFILE is None: 1056 if sys.platform == 'darwin' and LooseVersion(platform.mac_ver()[0]) < LooseVersion('10.9'): 1057 CHUNKED_FROMFILE = True 1058 else: 1059 CHUNKED_FROMFILE = False 1060 1061 if CHUNKED_FROMFILE: 1062 chunk_size = int(1024 ** 3 / dtype.itemsize) # 1Gb to be safe 1063 if count < chunk_size: 1064 return np.fromfile(infile, dtype=dtype, count=count, sep=sep) 1065 else: 1066 array = np.empty(count, dtype=dtype) 1067 for beg in range(0, count, chunk_size): 1068 end = min(count, beg + chunk_size) 1069 array[beg:end] = np.fromfile(infile, dtype=dtype, count=end - beg, sep=sep) 1070 return array 1071 else: 1072 return np.fromfile(infile, dtype=dtype, count=count, sep=sep) 1073 else: 1074 # treat as file-like object with "read" method; this includes gzip file 1075 # objects, because numpy.fromfile just reads the compressed bytes from 1076 # their underlying file object, instead of the decompressed bytes 1077 read_size = np.dtype(dtype).itemsize * count 1078 s = infile.read(read_size) 1079 return np.fromstring(s, dtype=dtype, count=count, sep=sep)
83 def read_file_and_fill_arr(file_descr, arr): 84 for line in file_descr.readlines(): 85 if line.startswith('#'): continue 86 phi_str, psi_str, value_str = line.split() 87 phi = int(float(phi_str)) 88 psi = int(float(psi_str)) 89 value = float(value_str) 90 arr[(phi+179)//2][(psi+179)//2] = value
5 def read_h5_array(f5, var_name): 6 7 try: 8 nx = f5['Nx'].value 9 ny = f5['Ny'].value 10 nz = f5['Nz'].value 11 except: 12 nx,ny,nz = np.shape(f5[var_name]) 13 return f5[var_name] 14 15 # column-ordered data with image convention (x horizontal, y vertical, ..) 16 # i.e., so-called fortran ordering 17 val = f5[var_name][:] 18 19 #print("reshaping 1D array of {} into multiD with {} {} {}".format(len(val), nx,ny,nz)) 20 21 # reshape to python format; from Fortran image to C matrix 22 val = np.reshape(val, (nz, ny, nx)) 23 val = val.ravel(order='F').reshape((nx,ny,nz)) 24 25 return val