Every line of 'python read file line by line into array' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
42 def readLines(in_file): 43 """Returns a list of lines from a input markdown file.""" 44 45 with open(in_file, 'r') as inf: 46 in_contents = inf.read().split('\n') 47 return in_contents
27 def read_lines(filepath): 28 """ 29 :param filepath: (string) path to a file, each line will be an item. 30 :return: (list). 31 """ 32 ls = [] 33 with open(filepath) as f: 34 for line in f: 35 line = line.strip() 36 ls.append(line) 37 return ls
130 def getLineList(self): 131 if self.__bufferSize: 132 raise NotImplementedError 133 return self.__lineList
60 def _read_file_lines(file_): 61 """Read lines of file 62 file_: either path to file or a file (like) object. 63 Return list of lines read or 'None' if file does not exist. 64 """ 65 cont_str = _read_file(file_) 66 if cont_str is None: 67 return None 68 return [url_str.rstrip() for url_str in cont_str.splitlines()]
170 def _read_line1(line): 171 """Reads the first line of a thermdat specie 172 173 Parameters 174 ---------- 175 line : str 176 Line 1 of thermdat specie 177 Returns 178 ------- 179 nasa_data : dict 180 Nasa input fields 181 """ 182 nasa_data = {} 183 ref_pos = 24 184 ref_offset = 5 185 max_elements = 4 186 phase_pos = 44 187 188 # Store the name 189 blank_pos = line.find(' ') 190 nasa_data['name'] = line[:blank_pos] 191 192 # Store the notes if any 193 notes = line[blank_pos:ref_pos].strip() 194 if len(notes) > 0: 195 nasa_data['notes'] = notes 196 197 # Store the elements 198 nasa_data['elements'] = {} 199 for i in range(max_elements): 200 blank_pos = line.find(' ', ref_pos) 201 # All the elements have been assigned 202 if blank_pos == ref_pos: 203 break 204 205 element = line[ref_pos:blank_pos] 206 ref_pos += ref_offset 207 coeff = int(line[blank_pos:ref_pos]) 208 209 nasa_data['elements'][element] = coeff 210 211 # Store the phase 212 nasa_data['phase'] = line[phase_pos] 213 214 # Store the temperatures 215 fields = _get_fields(line[phase_pos + 1:]) 216 nasa_data['T_low'] = float(fields[0]) 217 nasa_data['T_high'] = float(fields[1]) 218 nasa_data['T_mid'] = float(fields[2]) 219 return nasa_data
11 def read_input(file): 12 for line in file: 13 yield line.rstrip()
9 def read_file(): 10 # Text file containing words for training 11 training_file = 'belling_the_cat.txt' 12 content=[] 13 with open(training_file,'r') as f: 14 for line in f.readlines(): 15 # line 表示读到数据的每一行,linelist是按照空格切分成一个list 16 linelist=line.strip().split() 17 for i in linelist: 18 content.append(i.strip()) 19 content=np.array(content) 20 content=np.reshape(content,[-1,]) #shape (204,1) 21 return content
42 def read_line(filename): 43 """help function to read a single line from a file. returns none""" 44 try: 45 f = open(filename) 46 line = f.readline().strip() 47 f.close() 48 return line 49 except IOError: 50 return None
53 def read_file(f): 54 """ 55 Open the text file containing deep learning classification results for files. The decision variables is automatically opened from utils folder 56 :param f: text filename 57 :returns: 58 - sounds: sounds that were analyzed 59 - lc: labels for each sound 60 """ 61 with open(f, 'r') as i_file: 62 files = i_file.read().split('\n') 63 sounds = np.array([i.split(" ")[0].split(".json")[0] for i in np.array(files)]) 64 labels = np.array([i.split(" ") for i in np.array(files)]) 65 lc = [] 66 for lb in labels: 67 try: 68 lc.append(lb[1]) 69 except: 70 continue 71 decisions = np.loadtxt('utils/data.txt') 72 return sounds, np.array(lc), decisions
34 def load_lines(input_file): 35 with open(input_file, 'r') as read: 36 lines = read.read() 37 return lines