Every line of 'python standard deviation' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
100 def standard_deviation(self): 101 """Standard deviation of the distribution.""" 102 clean, total = self._prepare_for_stats() 103 if not total: 104 return None 105 106 return math.sqrt(clean.variance())
592 def test_standard_deviation(self): 593 result = standard_deviation( 594 Array.from_list([[20, 20, 20, 18, 25, 19, 20, 20, 20, 20, 40, 30, 1, 50, 1, 1, 5, 1, 20, 20], 595 [20, 20, 20, 2, 19, 1, 20, 20, 20, 1, 15, 1, 30, 1, 1, 18, 4, 1, 20, 20]], dtype.f32)).to_numpy() 596 self.assertAlmostEqual(result[0], 12.363150892875165, delta=1e-4) 597 self.assertAlmostEqual(result[1], 9.51367436903324, delta=1e-4)
232 def standardDeviation(self): 233 sd = MU.SD(self.msm) 234 return sd
105 def _get_std_deviation(self): 106 variance = sum((t - self.mean)**2 for t in self.times) 107 return (variance / self.total_count) ** 0.5
373 def standard_deviation(self, data): 374 """Compute the standard deviation. 375 376 The corresponding FORTRAN code is 377 378 .. code-block:: fortran 379 380 function standard_deviation(a, n) result(var) 381 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'standard_deviation' :: standard_deviation 382 integer :: n ! the length of the array 383 double precision :: var, a(n) 384 var = SUM(a)/SIZE(a) ! SUM is a built-in fortran function 385 var = SQRT(SUM((a-var)**2)/(SIZE(a)-1.0)) 386 end function standard_deviation 387 388 See the corresponding 64-bit :meth:`~.fortran64.Fortran64.standard_deviation` method. 389 390 Parameters 391 ---------- 392 data : :class:`list` of :class:`float` 393 The data to compute the standard deviation of. 394 395 Returns 396 ------- 397 :class:`float` 398 The standard deviation of `data`. 399 """ 400 n = len(data) 401 nc = ctypes.c_int32(n) 402 datac = (ctypes.c_double * n)(*data) 403 self.lib.standard_deviation.restype = ctypes.c_double 404 return self.lib.standard_deviation(ctypes.byref(datac), ctypes.byref(nc))