Every line of 'pytorch check if gpu is available' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
204 def is_gpu_available(): 205 from tensorflow.python.client import device_lib 206 local_device_protos = device_lib.list_local_devices() 207 gpu_list = [x.name for x in local_device_protos if x.device_type == 'GPU'] 208 if len(gpu_list) > 0: 209 print("Tensorflow GPU:", gpu_list) 210 return True 211 else: 212 return False
152 def gpu_available_in_session(): 153 sess = tfv1.get_default_session() 154 for dev in sess.list_devices(): 155 if dev.device_type.lower() == 'gpu': 156 return True 157 return False
29 def linux_with_gpu(): 30 """Returns if machine is running an Linux OS and has a GPU""" 31 has_gpu = is_available() 32 return is_linux() and has_gpu
36 def check_cuda_support(): 37 """ Check if tensorflow was build with CUDA """ 38 return tf.test.is_built_with_cuda()
41 def is_supported() -> bool: 42 return nvgpu.is_supported()
251 def gpu_no_of_var(var): 252 """ 253 Function that returns the GPU number or whether the tensor is on GPU or not 254 255 Args: 256 var: torch tensor 257 258 Returns: 259 The CUDA device that the torch tensor is on, or whether the tensor is on GPU 260 261 """ 262 263 try: 264 is_cuda = next(var.parameters()).is_cuda 265 except: 266 is_cuda = var.is_cuda 267 268 if is_cuda: 269 try: 270 return next(var.parameters()).get_device() 271 except: 272 return var.get_device() 273 else: 274 return False