8 examples of 'pytorch dropout example' in Python

Every line of 'pytorch dropout example' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
179def test_dropout(self):
180 input_sample_shape = (64, 1, 12)
181 dropout = layer.Dropout('drop', input_sample_shape=input_sample_shape)
182 out_sample_shape = dropout.get_output_sample_shape()
183 self.check_shape(out_sample_shape, input_sample_shape)
8def dropout(x, ratio=.5, **kwargs):
9 """dropout regularization
10 Even though it scales its input at training,
11 we do not consider it in Lipschitz constant.
12
13 :param x: input (vector/tensor, label, lipschitz)
14 :param ratio: dropout ratio
15 :return:
16 """
17 x, t, l = x
18 x = chainer.functions.dropout(x, ratio=ratio, **kwargs)
19 return x, t, l
76def dropout(input, *args, **kwargs):
77 output = F.dropout(input.F, *args, **kwargs)
78 return SparseTensor(output, coords_key=input.coords_key, coords_manager=input.coords_man)
69def forward(self, input_tensor):
70 emb = self.encoder_with_dropout(input_tensor, dropout=self.dropout_embedding if self.training else 0)
71 return self.dropout_input(emb)
192def dropout(x, keep_prob):
193 """ During training, performs dropout. Otherwise, returns original."""
194 output = tf.nn.dropout(x, keep_prob) if drop else x
195 return output
70@hparams(default=0.0, required=False)
71def dropout(self):
72 pass
62def Dropout(x, rate, training) :
63 return tf.layers.dropout(inputs=x, rate=rate, training=training)
346def test_dropout():
347 """Tests whether dropout layer reads in probability correctly"""
348 rnn = RNN(layers_info=[["lstm", 20], ["gru", 10], ["linear", 20], ["linear", 1]],
349 hidden_activations="relu", output_activation="sigmoid", dropout=0.9999,
350 initialiser="xavier")
351 assert rnn.dropout_layer.rate == 0.9999
352 assert not solves_simple_problem(X, y, rnn)
353 rnn = RNN(layers_info=[["lstm", 20], ["gru", 10], ["linear", 20], ["linear", 1]],
354 hidden_activations="relu", output_activation=None, dropout=0.0000001,
355 initialiser="xavier")
356 assert rnn.dropout_layer.rate == 0.0000001
357 assert solves_simple_problem(X, y, rnn)

Related snippets