Every line of 'pytorch load model' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
91 def load(self, model, checkpoint): 92 state_dict = torch.load(checkpoint, map_location='cpu') 93 filter = lambda x: x[7:] if x.startswith('module.') else x 94 state_dict = {filter(k):v for (k,v) in state_dict.items()} 95 model.load_state_dict(state_dict) 96 model.to(self.device) 97 model.eval() 98 return model
66 def load_models(load_path): 67 model_args = json.load(open(os.path.join(load_path, 'options.json'), 'r')) 68 vars(args).update(model_args) 69 autoencoder = Seq2Seq(emsize=args.emsize, 70 nhidden=args.nhidden, 71 ntokens=args.ntokens, 72 nlayers=args.nlayers, 73 noise_r=args.noise_r, 74 hidden_init=args.hidden_init, 75 dropout=args.dropout, 76 gpu=args.cuda) 77 gan_gen = MLP_G(ninput=args.z_size, noutput=args.nhidden, layers=args.arch_g) 78 gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d) 79 80 autoencoder = autoencoder.cuda() 81 gan_gen = gan_gen.cuda() 82 gan_disc = gan_disc.cuda() 83 84 word2idx = json.load(open(os.path.join(args.save, 'vocab.json'), 'r')) 85 idx2word = {v: k for k, v in word2idx.items()} 86 87 print('Loading models from {}'.format(args.save)) 88 loaded = torch.load(os.path.join(args.save, "model.pt")) 89 autoencoder.load_state_dict(loaded.get('ae')) 90 gan_gen.load_state_dict(loaded.get('gan_g')) 91 gan_disc.load_state_dict(loaded.get('gan_d')) 92 return model_args, idx2word, autoencoder, gan_gen, gan_disc
92 def load_model(self, encoder_path, decoder_path): 93 self.encoder.load_state_dict(torch.load(encoder_path, map_location=lambda storage, loc: storage)) 94 self.decoder.load_state_dict(torch.load(decoder_path, map_location=lambda storage, loc: storage))
183 def load_model(self): 184 # Check whether model exists 185 if not os.path.exists(self.args.model_dir): 186 raise Exception("Model doesn't exists! Train first!") 187 188 try: 189 self.bert_config = self.config_class.from_pretrained(self.args.model_dir) 190 logger.info("***** Config loaded *****") 191 self.model = self.model_class.from_pretrained(self.args.model_dir, config=self.bert_config, args=self.args) 192 self.model.to(self.device) 193 logger.info("***** Model Loaded *****") 194 except: 195 raise Exception("Some model files might be missing...")
18 def load_model(weights_path=None): 19 """ Load model with IMAGENET weights if other pretrained weights 20 are not given 21 """ 22 model, layers_to_remove = models.resnet34(pretrained=weights_path is None), 1 23 model = FTModel(model, 24 layers_to_remove=layers_to_remove, 25 num_features=128, 26 num_classes=100, 27 train_only_fc=False) 28 29 if weights_path is not None: 30 print('loading model weights') 31 if os.path.isfile(weights_path): 32 print(" => loading checkpoint '{}'".format(weights_path)) 33 checkpoint = torch.load(weights_path, map_location=DEVICE) 34 model.load_state_dict(checkpoint['state_dict']) 35 print(" => loaded checkpoint '{}' (epoch {})" 36 .format(weights_path, checkpoint['epoch'])) 37 else: 38 print("=> no checkpoint found at '{}'".format(weights_path)) 39 40 model.to(DEVICE) 41 model.eval() 42 43 return model
112 def load_model_from_checkpoint(): 113 global E, G, D, E_trainer, G_trainer, D_trainer 114 checkpoint = T.load(save_path) 115 E.load_state_dict(checkpoint['E_model']) 116 G.load_state_dict(checkpoint['G_model']) 117 D.load_state_dict(checkpoint['D_model']) 118 E_trainer.load_state_dict(checkpoint['E_trainer']) 119 G_trainer.load_state_dict(checkpoint['G_trainer']) 120 D_trainer.load_state_dict(checkpoint['D_trainer']) 121 return checkpoint['epoch']
13 def load_classifier(model_path, gpu_id): 14 if torch.cuda.is_available() and gpu_id != -1: 15 device = 'cuda:{}'.format(gpu_id) 16 else: 17 device = 'cpu' 18 model = DRNSub(1) 19 state_dict = torch.load(model_path, map_location='cpu') 20 model.load_state_dict(state_dict['model']) 21 model.to(device) 22 model.device = device 23 model.eval() 24 return model
17 def load_model(net, input_file='model.state'): 18 """ 19 Loads a pytorch model 20 :param net: 21 :param input_file: 22 :return: 23 """ 24 state_dict = torch.load(input_file) 25 net.load_state_dict(state_dict)
107 def load(self, modelpath): 108 state = torch.load(modelpath) 109 self.load_state_dict(state['model']) 110 return state['optimizer']
130 def loadModel(optional=True): 131 model_exists = os.path.isfile(MODEL_PATH_BEST) 132 if model_exists: 133 checkpoint = torch.load(MODEL_PATH_BEST) 134 net.load_state_dict(checkpoint['state_dict']) 135 print("MODEL LOADED, CONTINUING TRAINING") 136 return "TRAINING AVG LOSS: {}\n" \ 137 "TRAINING AVG DIFF: {}".format( 138 checkpoint["epoch_avg_loss"], checkpoint["epoch_avg_diff"]) 139 else: 140 if optional: 141 pass # model loading was optional, so nothing to do 142 else: 143 # shit, no model 144 raise Exception("model couldn't be found:", MODEL_PATH_BEST)