Every line of 'pytorch model summary' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
31 def summary(self): 32 print(self.input_shape) 33 for l in self.layers: 34 print(l) 35 print(l.get_output_shape())
104 def save_summary(self, summary, step, mode): 105 if mode == 'train': 106 self.train_writer.add_summary(summary, step) 107 elif mode == 'valid': 108 self.valid_writer.add_summary(summary, step) 109 self.sess.run(tf.local_variables_initializer())
261 def summary(self): 262 with tf.name_scope('summaries'): 263 tf.summary.scalar('xent_loss', tf.reduce_sum(self.xent_loss)) 264 tf.summary.scalar('l2_loss', tf.reduce_sum(self.lossL2)) 265 tf.summary.scalar("kl_loss", tf.reduce_sum(self.kl_loss)) 266 tf.summary.scalar("context_kl_loss", tf.reduce_sum(self.context_kl_loss)) 267 tf.summary.scalar('total_loss', tf.reduce_sum(self.cost)) 268 tf.summary.histogram("latent_vector", self.z_vector) 269 tf.summary.histogram("latent_mean", self.z_mean) 270 tf.summary.histogram("latent_log_sigma", self.z_log_sigma) 271 self.summary_op = tf.summary.merge_all()
415 def __summary(self): 416 with tf.name_scope('summary'): 417 self.__mean_accuracy = tf.placeholder(tf.float32, name='mean_accuracy') 418 self.__mean_loss = tf.placeholder(tf.float32, name='mean_loss') 419 self.__mean_log_loss = tf.placeholder(tf.float32, name='mean_log_loss') 420 # self.__mean_ch_log_loss = tf.placeholder(tf.float32, name='mean_ch_log_loss') 421 422 tf.summary.scalar('learning_rate', self.__learning_rate) 423 tf.summary.scalar('mean_accuracy', self.__mean_accuracy) 424 tf.summary.scalar('mean_loss', self.__mean_loss) 425 tf.summary.scalar('mean_log_loss', self.__mean_log_loss)
103 def summary(self): 104 x = torch.zeros(BATCH_SIZE, Z_DIM) 105 106 # Print the title in a good design 107 # for easy recognition. 108 print() 109 summary_title = f"| {self.__class__.__name__} Summary |" 110 for _ in range(len(summary_title)): 111 print("-", end="") 112 print() 113 print(summary_title) 114 for _ in range(len(summary_title)): 115 print("-", end="") 116 print("\n") 117 118 # Run forward pass while not tracking history on 119 # tape using `torch.no_grad()` for printing the 120 # output shape of each neural layer operation. 121 print(f"Input: {x.size()}") 122 with torch.no_grad(): 123 for layer in self.main1: 124 x = layer(x) 125 print(f"Out: {x.size()} \tLayer: {layer}") 126 x = x.view(-1, 4096, 4, 4) # Reshape for convolution 127 print(f"Out: {x.size()} \tLayer: Reshape") 128 for layer in self.main2: 129 x = layer(x) 130 print(f"Out: {x.size()} \tLayer: {layer}")
64 def summary(self): 65 self.adversarial.summary() 66 self.discriminator.summary()
153 def log_to_tensorboard(model, step, input_var, losses, top1, topk, mode): 154 im = {'amount': 10, 'every': 3} 155 156 if step % args.tensorboard_freq == 0 or mode == 'val': 157 # (1) Log the scalar values 158 info = { 159 '{}_loss_avg'.format(mode): losses.avg, 160 '{}_loss'.format(mode): losses.val, 161 162 '{}_accr_avg'.format(mode): top1.avg, 163 '{}_accr'.format(mode): top1.val, 164 165 '{}_accr_top{}_avg'.format(mode, args.top_k): topk.avg, 166 '{}_accr_top{}'.format(mode, args.top_k): topk.val 167 } 168 for tag, value in info.items(): 169 logger.scalar_summary(tag, value, step) 170 171 # (2) Log values and gradients of the parameters (histogram) 172 for tag, value in model.named_parameters(): 173 tag = tag.replace('.', '/') 174 logger.histo_summary(tag, to_np(value), step) 175 176 # At the beginning it may happen 177 # source: https://discuss.pytorch.org/t/zero-grad-optimizer-or-net/1887/6 178 if value.grad is not None: 179 logger.histo_summary(tag + '/grad', to_np(value.grad), step) 180 181 182 # (3) Log the images 183 # Take non-repeating images (every=3) in specified amount 184 images = input_var.view(-1, args.image_size, args.image_size)[:(im['amount'] * im['every'])] 185 images = images[::im['every']] 186 info = { 187 '{}_images'.format(mode): to_np(images) 188 } 189 for tag, images in info.items(): 190 logger.image_summary('{}_{}'.format(mode, tag), images, step)