Every line of 'pytorch save model' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
26 def save_model(model, name, epoch, folder_name): 27 print("Saving Model") 28 torch.save(model.state_dict(), 29 (folder_name + "trained_{}.pth").format(epoch)) 30 print("Done saving Model")
79 def save_model(model, optim, epoch, path): 80 torch.save({ 81 'epoch': epoch + 1, 82 'state_dict': model.state_dict(), 83 'optimizer': optim.state_dict()}, path)
66 def save_model(model, path): 67 model.eval() 68 torch.save(model.state_dict(), path) 69 model.train()
103 def saveModel(state, epoch, loss_epoch, valid_epoch, is_best, episode_idx): 104 torch.save({ 105 "epoch": epoch, 106 "episodes": episode_idx + 1, 107 "state_dict": state, 108 "epoch_avg_loss": round(loss_epoch, 10), 109 "epoch_avg_valid": round(valid_epoch, 10) 110 }, MODEL_PATH) 111 if is_best: 112 shutil.copyfile(MODEL_PATH, MODEL_PATH_BEST)
492 def save_model(self): 493 torch.save(self.G.state_dict(), self.save_dir + "/G.pt") 494 torch.save(self.E.state_dict(), self.save_dir + "/E.pt") 495 torch.save(self.D.state_dict(), self.save_dir + "/D.pt")
78 def save_model(self): 79 torch.save(self.net, self.file_path + "unet_model.pkl")
53 def save_model(net, model_path): 54 model_dir = os.path.dirname(model_path) 55 if not os.path.exists(model_dir): 56 os.makedirs(model_dir) 57 torch.save(net.state_dict(), model_path)
37 def create_save_model(model): 38 def save_model(path): 39 torch.save(model.state_dict(), path) 40 return save_model
101 def saveModel(state, epoch, loss_epoch, diff_epoch, is_best, episode_idx): 102 torch.save({ 103 "epoch": epoch, 104 "episodes": episode_idx + 1, 105 "state_dict": state, 106 "epoch_avg_loss": np.mean(loss_epoch), 107 "epoch_avg_diff": np.mean(diff_epoch) 108 }, MODEL_PATH) 109 if is_best: 110 shutil.copyfile(MODEL_PATH, MODEL_PATH_BEST)
155 def save_checkpoint(model, epoch): 156 model_out_path = "checkpoint/" + "model_epoch_{}.pth".format(epoch) 157 state = {"epoch": epoch ,"model": model} 158 if not os.path.exists("checkpoint/"): 159 os.makedirs("checkpoint/") 160 161 torch.save(state, model_out_path) 162 163 print("Checkpoint saved to {}".format(model_out_path))