Every line of 'remove stop words from string python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
73 def remove_stopwords(tokens, language): 74 """ 75 去除中文结束词 76 """ 77 from .stopwords import stopwords 78 79 # 删除结束词 80 tokens = set(tokens) - set(stopwords) 81 82 return tokens
53 def remove_stopwords(tokens, stopwords=STOPWORDS): 54 """Remove stopwords using list from `gensim.parsing.preprocessing.STOPWORDS`. 55 56 Parameters 57 ---------- 58 tokens : iterable of str 59 Sequence of tokens. 60 stopwords : iterable of str, optional 61 Sequence of stopwords 62 63 Returns 64 ------- 65 list of str 66 List of tokens without `stopwords`. 67 68 """ 69 return [token for token in tokens if token not in stopwords]
231 def _remove_stop_words(phrase): 232 while len(phrase) > 0 and (phrase[0].is_stop 233 or str(phrase[0]).strip().lower() in Stopwords.get_words()): 234 phrase = phrase[1:] 235 while len(phrase) > 0 and (phrase[-1].is_stop 236 or str(phrase[-1]).strip().lower() in Stopwords.get_words()): 237 phrase = phrase[:-1] 238 return phrase
6 def stopwords_filter(string): 7 8 text = string 9 # strip tashkeel because the stop words list contains voweled words 10 text = araby.strip_tashkeel(text) 11 word_tokenizer = WordTokenizer("arabic") 12 tokens = word_tokenizer.tokenize(text) 13 14 # filter stop words 15 no_stops = [w for w in tokens if w not in ARABIC_STOPS] 16 17 return no_stops
35 @staticmethod 36 def removeStopWords(words): 37 file = open("stopwords.dic") 38 stopwords = [] 39 for line in file.readlines(): 40 line = line.strip(); 41 if len(line) > 0: 42 stopwords.append(line) 43 file.close() 44 rwords = [] 45 for word in words: 46 flag = True 47 for stopword in stopwords: 48 #if word.encode('utf-8') == stopword.encode('utf-8'): 49 if word == stopword: 50 flag = False 51 break 52 if flag and len(word.strip()) > 0: 53 rwords.append(word) 54 return rwords
433 def stop_words_stem(self, stop_words=None): 434 if stop_words is not None: 435 stop_words_ = stop_words 436 else: 437 stop_words_ = self.stop_words 438 return list(set([stem(word) for word in stop_words_]))
478 def split_stop_keep_word_string(input_string: str) -> List[str]: 479 """Breaks stop and keepword string inputs into lists of words. 480 481 :param input_string: A string of words input by the user. 482 :return: A list of the user's string broken up into words. 483 """ 484 485 input_lines = input_string.split("\n") 486 487 # A list of all words delimited by commas, spaces, and newlines 488 input_words = [word 489 for line in input_lines 490 for word in re.split('[, ]', line.strip()) 491 if word != ''] 492 493 return input_words
44 def get_stop_words(file_path='./data/stop_words.txt'): 45 """获取停用词列表""" 46 stop_words_set = set() 47 with open(file_path, 'rb') as f: 48 for word in f: 49 if not word.startswith('//'): 50 stop_words_set.add(word.strip().decode('utf8')) 51 # 处理空字符串 52 if '' in stop_words_set: 53 stop_words_set.remove('') 54 55 return stop_words_set
30 def parse_stopwords(handle): 31 """Parse a file with stopwords in it into a list of stopwords. 32 33 :param handle: an readable file handle. 34 :returns: An iterator that will yield stopwords. 35 """ 36 for line in handle: 37 yield line.strip().lower()
188 def stop(tokensin, unigrams, ngrams, digits=True, tuples=False): 189 new_tokens = [] 190 for element in tokensin: 191 token = element[1] if tuples else element 192 ngram = token.split() 193 if any([x.isdigit() for x in ngram]) and digits: 194 continue 195 if len(ngram) == 1: 196 if ngram[0] not in unigrams: 197 new_tokens.append(element) 198 else: 199 if token not in ngrams: 200 new_tokens.append(element) 201 return new_tokens