Every line of 'scipy softmax' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
20 def _softmax(logits): 21 """Apply softmax non-linearity on inputs.""" 22 return np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True)
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
71 def softmax(x, dim): 72 return _softmax(x, dim)
49 def softmax(x, temp): 50 x = x / temp 51 e_x = np.exp(x - np.max(x)) 52 return e_x / e_x.sum()
4 def softmax(X): 5 e = np.exp(X - np.amax(X, axis=1, keepdims=True)) 6 return e/np.sum(e, axis=1, keepdims=True)
41 def forward(self, in_data, out_data): 42 x = in_data[0] 43 y = out_data[0] 44 y[:] = np.exp(x - x.max(axis=1).reshape((x.shape[0], 1))) 45 y /= y.sum(axis=1).reshape((x.shape[0], 1))
298 def np_softmax(x): 299 """Compute softmax values for each sets of scores in x.""" 300 e_x = np.exp(x - np.max(x)) 301 return e_x / e_x.sum()
14 def softmax(x): 15 probs = np.exp(x - np.max(x)) 16 probs /= np.sum(probs) 17 return probs
29 def softmax(x): # with numerical stability, as suggested in Karpathy's notes. 30 x = x - np.max(x, axis=0) # -= would make it inplace 31 return np.exp(x) / np.sum(np.exp(x), axis=0)
6 def softmax(x): 7 exp_out = np.exp(x - np.max(x, axis=-1)[..., None]) 8 return exp_out / np.sum(exp_out, axis=-1)[..., None]
523 def softmax(x): 524 """Compute softmax values for each sets of scores in x.""" 525 return np.exp(x) / np.sum(np.exp(x), axis=0)