Every line of 'seaborn time series' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
20 def plot_time_series(plot_widget, x, y): 21 plot_widget.canvas.axes.cla() 22 plot_widget.canvas.axes.step(x, y, where='post') 23 plot_widget.canvas.axes.get_xaxis().set_tick_params(labelrotation=45.0) 24 plot_widget.canvas.draw()
8 def plot_data(data, value, time, run, condition, title='', ax=None, ci=95): 9 """ 10 Plot time series data using sns.tsplot 11 12 Params 13 ---------- 14 data (pd.DataFrame): 15 value (str): value column 16 time (str): time column 17 condition (str): sns.tsplot condition 18 title (str): 19 ax (matplotlib axis): 20 """ 21 if isinstance(data, list): 22 data = pd.concat(data, ignore_index=True) 23 sns.set(style="darkgrid", font_scale=1.5) 24 plot = sns.tsplot( 25 data=data, time=time, value=value, unit=run, condition=condition, 26 ax=ax, ci=ci) 27 plt.title(title) 28 return plot
168 @auto_refresh 169 def plot_series(self, timeseries, **kwargs): 170 out = super(TimeSeriesAxes, self).plot_series(timeseries, **kwargs) 171 self._init_epoch_from_array(timeseries) 172 return out
164 def plot_time_series(prices, *names): 165 fig, ax = plt.subplots() 166 167 prices.plot(ax=ax) 168 plotting.style_default(ax, fig, ylabel='Price') 169 170 plt.show()