Every line of 'spark session in pyspark' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
116 def spark_context(): 117 """ 118 Returns the spark context. 119 """ 120 return CommonSparkContext.Instance().sc()
6 def main(): 7 '''Program entry point''' 8 9 #Intialize a spark context 10 with pyspark.SparkContext("local", "PySparkWordCount") as sc: 11 #Get a RDD containing lines from this script file 12 lines = sc.textFile(__file__) 13 #Split each line into words and assign a frequency of 1 to each word 14 words = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)) 15 #count the frequency for words 16 counts = words.reduceByKey(operator.add) 17 #Sort the counts in descending order based on the word frequency 18 sorted_counts = counts.sortBy(lambda x: x[1], False) 19 #Get an iterator over the counts to print a word and its frequency 20 for word,count in sorted_counts.toLocalIterator(): 21 print(u"{} --> {}".format(word, count))
91 def sc(self): 92 return self._sc
13 def get_spark_context(): 14 if SparkContext._active_spark_context: 15 return SparkContext._active_spark_context 16 else: 17 raise RuntimeError("SparkContext must be initialized")