Every line of 'split data into train and test in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
36 def prepare_data(): 37 data = io.loadmat(raw_filename) 38 df = pd.DataFrame(dict( 39 spectra=data['Int_ABQR'].tolist(), 40 solute=data['Gamme_ABQR'].ravel(), 41 vial=data['Vial_ABQR'].ravel(), 42 concentration=data['Conc_ABQR'].ravel(), 43 molecule=data['Molecule_ABQR'].ravel())) 44 skf = ShuffleSplit(n_splits=2, test_size=held_out_test_size, 45 random_state=random_state) 46 train_is, test_is = list(skf.split(df))[0] 47 df_train = df.iloc[train_is] 48 df_test = df.iloc[test_is] 49 df_train.to_csv(train_filename, index=False) 50 df_test.to_csv(test_filename, index=False)
17 def split_data(data, percent_train=0.80): 18 num_rows = len(data) 19 train_data, test_data = [], [] 20 for idx, row in enumerate(data): 21 if idx < num_rows * percent_train: 22 train_data.append(row) 23 else: 24 test_data.append(row) 25 return train_data, test_data
82 def my_train_split(ds, y): 83 return ds, skorch.dataset.Dataset(corpus.valid[:200], y=None)
35 def split_data(df): 36 X = df.drop('Y', axis=1).values 37 y = df['Y'].values 38 39 X_train, X_test, y_train, y_test = train_test_split( 40 X, y, test_size=0.2, random_state=0) 41 data = {"train": {"X": X_train, "y": y_train}, 42 "test": {"X": X_test, "y": y_test}} 43 return data
23 def train_valid_test_split(SOURCE_DATA_DIR, TARGET_DATA_DIR, train_size=0.8, valid_size=0.1, 24 COMBINE_FOLDERS=None, SELECT_FOLDERS=None): 25 """ 26 Usage: 27 SOURCE_DATA_DIR = "data/ClothingAttributeDataset/images/" 28 TARGET_DATA_DIR = "data/" 29 30 train_valid_test_split(SOURCE_DATA_DIR, TARGET_DATA_DIR) 31 """ 32 if COMBINE_FOLDERS is None: 33 COMBINE_FOLDERS = dict() 34 for folder_name in ["train", "test", "valid"]: 35 rmtree(os.path.join(TARGET_DATA_DIR, folder_name), ignore_errors=True) 36 os.makedirs(os.path.join(TARGET_DATA_DIR, folder_name)) 37 38 # Split records by 80-20 between Train and Validation Set 39 filenames = np.random.permutation(glob(os.path.join(SOURCE_DATA_DIR, "*.jpg"))) 40 41 train_idx = int(len(filenames) * train_size) 42 test_idx = int(len(filenames) * (train_size+valid_size)) 43 for idx, filename in enumerate(filenames): 44 target_name = filename.split("/")[-1] 45 if idx < train_idx: 46 target_filepath = os.path.join(TARGET_DATA_DIR, "train", target_name) 47 elif idx < test_idx: 48 target_filepath = os.path.join(TARGET_DATA_DIR, "valid", target_name) 49 else: 50 target_filepath = os.path.join(TARGET_DATA_DIR, "test", target_name) 51 copyfile(filenames[idx], target_filepath)
36 def split_data(): 37 split_rate_ = 0.9 38 dir_train_file_idx_ = 'aid_data/train_file_idx.txt' 39 filelist_ = ['raw_data/part-%d' % x for x in range(len(os.listdir('raw_data')))] 40 41 if not os.path.exists(dir_train_file_idx_): 42 train_file_idx = list( 43 numpy.random.choice( 44 len(filelist_), int(len(filelist_) * split_rate_), False)) 45 with open(dir_train_file_idx_, 'w') as fout: 46 fout.write(str(train_file_idx)) 47 else: 48 with open(dir_train_file_idx_, 'r') as fin: 49 train_file_idx = eval(fin.read()) 50 51 for idx in range(len(filelist_)): 52 if idx in train_file_idx: 53 shutil.move(filelist_[idx], 'train_data') 54 else: 55 shutil.move(filelist_[idx], 'test_data')
14 def read_train_data(): 15 trainData = [] 16 trainLabel = [] 17 n, m = map(int, raw_input().split()) 18 for _ in xrange(n): 19 data = raw_input().split() 20 data.pop(0) 21 trainLabel.append(int(data[0])) 22 data.pop(0) 23 trainData.append({int(x.split(':')[0]) : float(x.split(':')[1]) for x in data for e in x.split(':') }) 24 trainData = transformer.fit_transform(trainData).toarray() 25 return trainData, trainLabel
355 @classmethod 356 def training_split(cls, 357 dataset_folder, 358 number_of_validation_examples=500, 359 maximum_disparity=255): 360 """Returns training and validation datasets. 361 362 Example from FlyingThings3d dataset is added to the training 363 or validation datasets if: 364 365 (1) it is training example of FlyingThings3d dataset; 366 (2) it does not have rendering artifacts; 367 (3) all its disparities are within the range [0, maximum_disparity]. 368 369 Args: 370 dataset_folder: folder with FlyingThings3D dataset, that contains 371 "frames_cleanpass" folder with left and right 372 images and "disparity" folder with disparities. 373 number_of_validation_examples: number of examples from training set 374 that will be used for validation. 375 maximum_disparity: maximum disparity in training / validation 376 dataset. All training examples with disparity 377 larger than "maximum_disparity" are excluded 378 from the dataset. 379 """ 380 examples = _find_examples(dataset_folder) 381 # Manual random seed garantees that splits will be same in a 382 # different runs. 383 random.seed(0) 384 random.shuffle(examples) 385 examples = _split_examples_into_training_and_test_sets(examples)[0] 386 examples = _filter_out_examples_with_rendering_artifacts(examples) 387 examples = _filter_out_examples_with_large_disparities( 388 examples, maximum_disparity) 389 _dataset = FlyingThings3D(examples) 390 validation_dataset, training_dataset = _dataset.split_in_two( 391 size_of_first_subset=number_of_validation_examples) 392 return training_dataset, validation_dataset
6 def split(df): 7 ''' 8 9 :param df: Dataframe to be splited 10 :return: Sorted list of dataframe's splited list 11 ''' 12 trainingSet, testSet = train_test_split(df, test_size=0.2) 13 sorted_trainSet = trainingSet.sort_values('user_id') 14 sorted_testSet = testSet.sort_values('user_id') 15 return sorted_testSet, sorted_trainSet
50 def getTrainFeaturesAndLabels(data): 51 ''' 52 getTrainFeaturesAndLabels() scales features and encodes labels using 53 globally defined variables of the LabelEncoder() and StandardScaler() 54 objects 55 ''' 56 #set up scaler and encoder 57 le=LabelEncoder() 58 scaler=StandardScaler() 59 le.fit(list(set(data.proto))) 60 scaler.fit(data.drop('proto',axis=1) ) 61 #scale feature and encode labels 62 features=scaler.transform(data.drop('proto',axis=1)) 63 target=le.transform(data.proto) 64 return features,target,le,scaler