Every line of 'sum of all elements in array python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
7 def test_sum(self): 8 self.create_node('Sum', {'input[0]': 5.0, 'input[1]': -3.0, 'input[2]': 2.0}, 4.0)
431 def _prod(array): 432 prod = 1 433 for value in array: 434 prod *= value 435 return prod
284 def prod(array): 285 """Element-wise product of a numpy array across all the slave processes. 286 The result is only available in the main_slave (rank 1).""" 287 _reduce(array, "PROD")
41 def countArrayElements(array): 42 ''' 43 Simple method to count the repetitions of elements in an array 44 45 @param array: An array of elements 46 @return: A tuple (elements,counters), where elements is a list with the distinct elements and counters is the list with the number of times they appear in the array 47 ''' 48 elements = [] 49 counters = [] 50 for element in array: 51 if element in elements: 52 indx = elements.index(element) 53 counters[indx] += 1 54 else: 55 elements.append(element) 56 counters.append(1) 57 return elements,counters
402 def sum(self, axis=None, dtype=None, out=None): 403 """ 404 Returns the sum of the matrix elements, along the given axis. 405 406 Refer to `numpy.sum` for full documentation. 407 408 See Also 409 -------- 410 numpy.sum 411 412 Notes 413 ----- 414 This is the same as `ndarray.sum`, except that where an `ndarray` would 415 be returned, a `matrix` object is returned instead. 416 417 Examples 418 -------- 419 >>> x = np.matrix([[1, 2], [4, 3]]) 420 >>> x.sum() 421 10 422 >>> x.sum(axis=1) 423 matrix([[3], 424 [7]]) 425 >>> x.sum(axis=1, dtype='float') 426 matrix([[ 3.], 427 [ 7.]]) 428 >>> out = np.zeros((1, 2), dtype='float') 429 >>> x.sum(axis=1, dtype='float', out=out) 430 matrix([[ 3.], 431 [ 7.]]) 432 433 """ 434 return N.ndarray.sum(self, axis, dtype, out)._align(axis)
433 def sum_sum(values: TypeValList) -> float: 434 """Calculate the sum of ``values``.""" 435 if len(values) == 0: 436 return np.nan 437 438 return sum(values)
6 @jit(native=True, xsimd=True) 7 def row_sum(arr, columns): 8 return arr.T[columns].sum(0)