Every line of 'sum of prime numbers from m to n in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
3 def is_prime(n): 4 i = 3 5 while i * i <= n: 6 if n % i == 0: return False 7 i += 2 8 return True
1 def is_prime(n): 2 if n < 2: 3 return False 4 5 i = 2 6 7 while i * i <= n: 8 if n % i == 0: 9 return False 10 11 i += 1 12 13 return True
6 def is_prime(n): 7 ''' 8 checks if a number is prime 9 ''' 10 if n < 2: 11 return False 12 if n == 2: 13 return True 14 for x in range(2, int(n**0.5)+1, 2): 15 if n % x == 0: 16 return False 17 return True
23 def isPrime(n): 24 return not any(x for x in range(2, int(sqrt(n)) + 1) if n % x == 0)
3 def is_prime(n): 4 if n <= 1: 5 return False 6 elif n == 2: 7 return True 8 elif n % 2 == 0: 9 return False 10 for i in xrange(3, int(sqrt(n))+1, 2): 11 if n % i == 0: 12 return False 13 return True
21 def is_prime(n): 22 for i in xrange(2, int(sqrt(n)) + 1): 23 if n % i == 0: 24 return False 25 26 return True
18 def gcd(m, n): 19 while m != 0: 20 m, n = n % m, m 21 return n
746 def prime_number_factorisation(n): 747 if n < 2: 748 return [n] 749 i = 2 750 factors = [] 751 while i * i <= n: 752 if n % i: 753 i += 1 754 else: 755 n //= i 756 factors.append(i) 757 if n > 1: 758 factors.append(n) 759 return factors
12 def isprime(n): 13 n = int(n) 14 return n > 1 and all(n%i for i in islice(count(2), int(sqrt(n)-1)))
45 def smallest_prime_atleast(m): 46 """ 47 Find the first prime >= m 48 """ 49 n=m 50 while not is_prime(n): 51 n+=1 52 return n