Every line of 'sum of prime numbers from m to n in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

By copying the Snyk Code Snippets you agree to

this disclaimer

3 def is_prime(n): 4 i = 3 5 while i * i <= n: 6 if n % i == 0: return False 7 i += 2 8 return True

Important

Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code

1 def is_prime(n): 2 if n < 2: 3 return False 4 5 i = 2 6 7 while i * i <= n: 8 if n % i == 0: 9 return False 10 11 i += 1 12 13 return True

6 def is_prime(n): 7 ''' 8 checks if a number is prime 9 ''' 10 if n < 2: 11 return False 12 if n == 2: 13 return True 14 for x in range(2, int(n**0.5)+1, 2): 15 if n % x == 0: 16 return False 17 return True

23 def isPrime(n): 24 return not any(x for x in range(2, int(sqrt(n)) + 1) if n % x == 0)

3 def is_prime(n): 4 if n <= 1: 5 return False 6 elif n == 2: 7 return True 8 elif n % 2 == 0: 9 return False 10 for i in xrange(3, int(sqrt(n))+1, 2): 11 if n % i == 0: 12 return False 13 return True

21 def is_prime(n): 22 for i in xrange(2, int(sqrt(n)) + 1): 23 if n % i == 0: 24 return False 25 26 return True

18 def gcd(m, n): 19 while m != 0: 20 m, n = n % m, m 21 return n

746 def prime_number_factorisation(n): 747 if n < 2: 748 return [n] 749 i = 2 750 factors = [] 751 while i * i <= n: 752 if n % i: 753 i += 1 754 else: 755 n //= i 756 factors.append(i) 757 if n > 1: 758 factors.append(n) 759 return factors

12 def isprime(n): 13 n = int(n) 14 return n > 1 and all(n%i for i in islice(count(2), int(sqrt(n)-1)))

45 def smallest_prime_atleast(m): 46 """ 47 Find the first prime >= m 48 """ 49 n=m 50 while not is_prime(n): 51 n+=1 52 return n