Every line of 'syntax to import decision tree classifier in sklearn' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
14 def get_fast_classifiers(n_classes): 15 """Get a list of very fast classifiers. 16 17 Parameters 18 ---------- 19 n_classes : int 20 Number of classes in the dataset. Used to decide on the complexity 21 of some of the classifiers. 22 23 24 Returns 25 ------- 26 fast_classifiers : list of sklearn estimators 27 List of classification models that can be fitted and evaluated very 28 quickly. 29 """ 30 return [ 31 # These are sorted by approximate speed 32 DummyClassifier(strategy="prior"), 33 GaussianNB(), 34 make_pipeline(MinMaxScaler(), MultinomialNB()), 35 DecisionTreeClassifier(max_depth=1, class_weight="balanced"), 36 DecisionTreeClassifier(max_depth=max(5, n_classes), 37 class_weight="balanced"), 38 DecisionTreeClassifier(class_weight="balanced", 39 min_impurity_decrease=.01), 40 LogisticRegression(C=.1, solver='lbfgs', multi_class='auto', 41 class_weight='balanced', max_iter=1000), 42 # FIXME Add warm starting here? 43 LogisticRegression(C=1, solver='lbfgs', multi_class='auto', 44 class_weight='balanced', max_iter=1000) 45 ]
332 def test_export_to_sklearn_pipeline(self): 333 from lale.lib.sklearn import PCA 334 from lale.lib.sklearn import KNeighborsClassifier 335 from sklearn.pipeline import make_pipeline 336 lale_pipeline = PCA(n_components=3) >> KNeighborsClassifier() 337 trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train) 338 sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline() 339 for i, pipeline_step in enumerate(sklearn_pipeline.named_steps): 340 sklearn_step_params = sklearn_pipeline.named_steps[pipeline_step].get_params() 341 lale_sklearn_params = trained_lale_pipeline.steps()[i]._impl._wrapped_model.get_params() 342 self.assertEqual(sklearn_step_params, lale_sklearn_params) 343 self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline)