Every line of 'tf keras layers flatten' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
79 def flatten(value, drop_mask=False): 80 if drop_mask: 81 value = DropMask()(value) 82 return Flatten()(value)
391 @tf_export('layers.flatten') 392 def flatten(inputs, name=None): 393 """Flattens an input tensor while preserving the batch axis (axis 0). 394 395 Arguments: 396 inputs: Tensor input. 397 name: The name of the layer (string). 398 399 Returns: 400 Reshaped tensor. 401 402 Examples: 403 404
x = tf.placeholder(shape=(None, 4, 4), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, 16)`
x = tf.placeholder(shape=(None, 3, None), dtype='float32')
y = flatten(x)
# now `y` has shape `(None, None)`
"""
layer = Flatten(name=name)
return layer.apply(inputs)
195 def pass_forward(self, inputs, train_mode = True, **kwargs): 196 self.prev_shape = inputs.shape 197 return np.reshape(inputs, (inputs.shape[0], -1))
166 def instantiate_flatten(self, node, tensor, params): 167 return slim.flatten(tensor, **params)
386 def build(self, hp, inputs=None): 387 inputs = nest.flatten(inputs) 388 utils.validate_num_inputs(inputs, 1) 389 input_node = inputs[0] 390 if len(input_node.shape) > 2: 391 return tf.keras.layers.Flatten()(input_node) 392 return input_node
57 def flatten_layer(layer): 58 # Get the shape of the input layer 59 layer_shape = layer.get_shape() 60 61 # NB: The shape of the input layer is assumed to be: 62 # layer_shape = [num_images, img_height, img_width, num_channels] 63 64 # The number of features is: img_height * img_width * num_channels 65 num_features = layer_shape[1:4].num_elements() 66 67 # Reshape the layer to [num_images, num_features] 68 # NB: We just set the size of the second dimension 69 # to num_features and the size of the first dimension to -1 70 # which means the size in that dimension is calculated 71 # so the total size of the tensor is unchanged from the reshaping 72 layer_flat = tf.reshape(layer, [-1, num_features]) 73 74 # NB: The shape of the flattened layer is now: 75 # [num_images, img_height * img_width * num_channels] 76 77 return layer_flat, num_features
66 def flatten_layer(layer): 67 ''' 68 @param layer: the conv layer 69 ''' 70 layer_shape = layer.get_shape() # 获取形状(layer_shape == [num_images, img_height, img_width, num_channels]) 71 num_features = layer_shape[1:4].num_elements() # [1:4] 是最后3个维度,就是展开的长度 72 layer_flat = tf.reshape(layer, [-1, num_features]) # 展开 73 return layer_flat, num_features
96 def flatten(x: tf.Tensor): 97 c = x.shape[-1] 98 b = tf.shape(x)[0] 99 return tf.reshape(x, [b, -1, c])
125 def flatten(inputs): 126 return tf.expand_dims(common_layers.flatten4d3d(inputs), axis=2)
26 def forward(self, input, *args, **kwargs): 27 self.last_input_shape = input.shape 28 29 # to_flatten = np.prod(self.last_input_shape[self.outdim-1:]) 30 # flattened_shape = input.shape[:self.outdim-1] + (to_flatten, ) 31 flattened_shape = input.shape[:self.outdim - 1] + (-1,) 32 return np.reshape(input, flattened_shape)