Every line of 'tf reduce sum' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
176 def reduce_sum(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None): 177 tf.reduce_sum(input_tensor, axis, keep_dims, name, reduction_indices)
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
614 def sum(self, x: BKTensor, *args: Any, **kwargs: Any) -> BKTensor: 615 return self.tf.reduce_sum(x, *args, **kwargs)
488 def sum(tensor, axis=None, **kw): 489 return _call_unary('sum', tensor, axis=axis, **kw)
47 def sum(x, axis=None, keepdims=False): 48 return Sum(axis, keepdims)(x)
557 def sum(x, axis=None, keepdims=False): 558 """Sum of the values in a tensor, alongside the specified axis. 559 """ 560 return T.sum(x, axis=axis, keepdims=keepdims)
37 @ops.RegisterGradient("Sum") 38 def _SumGrad(op, grad): 39 """Gradient for Sum.""" 40 # Fast path for when reducing to a scalar and ndims is known: adds only 41 # Reshape and Tile ops (and possibly a Shape). 42 if (op.inputs[0].get_shape().ndims is not None and 43 op.inputs[1].op.type == "Const"): 44 rank = op.inputs[0].get_shape().ndims 45 axes = tensor_util.MakeNdarray(op.inputs[1].op.get_attr("value")) 46 if np.array_equal(axes, np.arange(rank)): # Reduce all dims. 47 grad = array_ops.reshape(grad, [1] * rank) 48 # If shape is not fully defined (but rank is), we use Shape. 49 if op.inputs[0].get_shape().is_fully_defined(): 50 input_shape = op.inputs[0].get_shape().as_list() 51 else: 52 input_shape = array_ops.shape(op.inputs[0]) 53 return [array_ops.tile(grad, input_shape), None] 54 55 input_shape = array_ops.shape(op.inputs[0]) 56 output_shape_kept_dims = math_ops.reduced_shape(input_shape, op.inputs[1]) 57 tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims) 58 grad = array_ops.reshape(grad, output_shape_kept_dims) 59 return [array_ops.tile(grad, tile_scaling), None]