Every line of 'torch expand_dims' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
101 def expand_dims(self, a, axis=-1): 102 return self.xp.expand_dims(a, axis=axis)
31 def expand_dims(self, input, axis=None): 32 return np.expand_dims(input, axis=axis)
683 def squeeze(self, dim=None): 684 """Return a tensor with all the dimensions of input of size 1 removed. 685 686 Parameters 687 ---------- 688 dim : int, optional 689 The optional dim to remove. 690 691 692 Returns 693 ------- 694 dragon.vm.torch.Tensor 695 The new tensor. 696 697 """ 698 raise NotImplementedError('Refer torch.ops.tensor.squeeze')
77 def unsqueeze3(X): 78 return X.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
101 def expand_input_dims_for_t2t(t, batched=False): 102 """Expands a plain input tensor for using it in a T2T graph. 103 104 Args: 105 t: Tensor 106 batched: Whether to expand on the left side 107 108 Returns: 109 Tensor `t` expanded by 1 dimension on the left and two dimensions 110 on the right. 111 """ 112 if not batched: 113 t = tf.expand_dims(t, 0) # Because of batch_size 114 t = tf.expand_dims(t, -1) # Because of modality 115 t = tf.expand_dims(t, -1) # Because of random reason X 116 return t
174 def expand_tile_dims(x, depth, axis=1): 175 """Expand and Tile x on axis by depth""" 176 x = tf.expand_dims(x, axis=axis) 177 tile_dims = [1] * x.shape.ndims 178 tile_dims[axis] = depth 179 180 return tf.tile(x, tile_dims)