Every line of 'torch save model' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
492 def save_model(self): 493 torch.save(self.G.state_dict(), self.save_dir + "/G.pt") 494 torch.save(self.E.state_dict(), self.save_dir + "/E.pt") 495 torch.save(self.D.state_dict(), self.save_dir + "/D.pt")
103 def saveModel(state, epoch, loss_epoch, valid_epoch, is_best, episode_idx): 104 torch.save({ 105 "epoch": epoch, 106 "episodes": episode_idx + 1, 107 "state_dict": state, 108 "epoch_avg_loss": round(loss_epoch, 10), 109 "epoch_avg_valid": round(valid_epoch, 10) 110 }, MODEL_PATH) 111 if is_best: 112 shutil.copyfile(MODEL_PATH, MODEL_PATH_BEST)
101 def saveModel(state, epoch, loss_epoch, diff_epoch, is_best, episode_idx): 102 torch.save({ 103 "epoch": epoch, 104 "episodes": episode_idx + 1, 105 "state_dict": state, 106 "epoch_avg_loss": np.mean(loss_epoch), 107 "epoch_avg_diff": np.mean(diff_epoch) 108 }, MODEL_PATH) 109 if is_best: 110 shutil.copyfile(MODEL_PATH, MODEL_PATH_BEST)
26 def save_model(model, name, epoch, folder_name): 27 print("Saving Model") 28 torch.save(model.state_dict(), 29 (folder_name + "trained_{}.pth").format(epoch)) 30 print("Done saving Model")
79 def save_model(model, optim, epoch, path): 80 torch.save({ 81 'epoch': epoch + 1, 82 'state_dict': model.state_dict(), 83 'optimizer': optim.state_dict()}, path)
53 def save_model(net, model_path): 54 model_dir = os.path.dirname(model_path) 55 if not os.path.exists(model_dir): 56 os.makedirs(model_dir) 57 torch.save(net.state_dict(), model_path)
29 def save_checkpoint(now_epoch, net, optimizer, lr_scheduler, file_name): 30 checkpoint = {'epoch': now_epoch, 31 'state_dict': net.state_dict(), 32 'optimizer_state_dict': optimizer.state_dict(), 33 'lr_scheduler_state_dict':lr_scheduler.state_dict()} 34 if os.path.exists(file_name): 35 print('Overwriting {}'.format(file_name)) 36 torch.save(checkpoint, file_name)
251 def save_model(self): 252 253 path = self.output_dir/'model_out' 254 path.mkdir(exist_ok=True) 255 256 torch.cuda.empty_cache() 257 # Save a trained model 258 model_to_save = self.model.module if hasattr(self.model, 'module') else self.model # Only save the model it-self 259 model_to_save.save_pretrained(path) 260 261 # save the tokenizer 262 self.data.tokenizer.save_pretrained(path)
78 def save_model(self): 79 torch.save(self.net, self.file_path + "unet_model.pkl")
20 def save(self, path, epoch): 21 # must be rewritten if self is not nn.Module 22 f = open(os.path.join(path, "%s.txt" % self.__name__), "w") 23 f.write(str(self)) 24 f.close() 25 torch.save( 26 self.state_dict(), os.path.join(path, "%s_%s.pth" % (self.__name__, epoch)) 27 )